Uncertainty analysis of deterministic models with gaussian process approximation
نویسندگان
چکیده
منابع مشابه
Approximation of Gaussian process regression models after training
The evaluation of a standard Gaussian process regression model takes time linear in the number of training data points. In this paper, the models are approximated in the feature space after training. It is empirically shown that the time required for evaluation can be drastically reduced without considerable loss in performance.
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملHierarchically-partitioned Gaussian Process Approximation
The Gaussian process (GP) is a simple yet powerful probabilistic framework for various machine learning tasks. However, exact algorithms for learning and prediction are prohibitive to be applied to large datasets due to inherent computational complexity. To overcome this main limitation, various techniques have been proposed, and in particular, local GP algorithms that scales ”truly linearly” w...
متن کاملAdaptive Gaussian Predictive Process Approximation
We address the issue of knots selection for Gaussian predictive process methodology. Predictive process approximation provides an effective solution to the cubic order computational complexity of Gaussian process models. This approximation crucially depends on a set of points, called knots, at which the original process is retained, while the rest is approximated via a deterministic extrapolati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Keldysh Institute Preprints
سال: 2016
ISSN: 2071-2898,2071-2901
DOI: 10.20948/prepr-2016-91